Abstract

Friction stir blind riveting is a new joining process for one-sided joining (compared with the two-sided access required for, for example, self-piercing riveting) of aluminum alloys, which eliminates the need to predrill a hole for rivet insertion. A blind rivet rotating at high speed is brought into contact with the workpieces, thereby generating frictional heat between the rivet and the workpiece, which softens the workpiece material and enables the rivet to be driven into the workpieces under reduced force. Once fully inserted, the blind rivet is upset using the internal mandrel (as in a conventional blind riveting process) to fasten the workpieces together. Our study showed that friction stir blind riveting process can be carried out over a wide range of operating parameters. The resulting joints show consistent strength under tensile load with minimal influence of changes in operating parameters. The robustness of the process against variations in operating conditions shows that the process can be carried out without high-end equipment and without requiring precise initial setup. It also suggests that the process is feasible for rapid joint fabrication in volume production. Further study revealed superior static and fatigue strength from the friction stir blind riveting process, when compared with conventional spot welding, which suggests potential for reduction in the number of joints required in a structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.