Abstract
In this paper, we propose a new real one-dimensional cosine polynomial (1-DCP) chaotic map. The statistical analysis of the proposed map shows that it has a simple structure, a high chaotic behavior, and an infinite chaotic range. Therefore, the proposed map is a perfect candidate for the design of chaos-based cryptographic systems. Moreover, we propose an application of the 1-DCP map in the design of a new efficient image encryption scheme (1-DCPIE) to demonstrate the new map further good cryptographic proprieties. In the new scheme, we significantly reduce the encryption process time by raising the small processing unit from the pixels level to the rows/columns level and replacing the classical sequential permutation substitution architecture with a parallel permutation substitution one. We apply several simulation and security tests on the proposed scheme and compare its performances with some recently proposed encryption schemes. The simulation results prove that 1-DCPIE has a better security level and a higher encryption speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.