Abstract
Features of oil spills and look-alikes in polarimetric synthetic aperture radar (SAR) images always play an important role in oil spill detection. Many oil spill detection algorithms have been implemented based on these features. Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes, some oil spill detection algorithms do not consider the environmental factors. To distinguish oil spills and look-alikes more accurately based on environmental factors and image features, a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed. The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model. The Faster-region convolutional neural networks (RCNN) model was used for oil spill detection based on the convolution features. The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory. The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1 798 image samples and environmental information records related to the image samples. The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate, with an identification rate greater than 75% and a false alarm rate lower than 19% from experiments. A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm. The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.