Abstract

We propose a discontinuous Galerkin finite element method for convection diffusion equations that involves a new methodology handling the diffusion term. Test function derivative numerical flux term is introduced in the scheme formulation to balance the solution derivative numerical flux term. The scheme has a nonsymmetric structure. For general nonlinear diffusion equations, nonlinear stability of the numerical solution is obtained. Optimal kth order error estimate under energy norm is proved for linear diffusion problems with piecewise P k polynomial approximations. Numerical examples under one-dimensional and two-dimensional settings are carried out. Optimal (k+1)th order of accuracy with P k polynomial approximations is obtained on uniform and nonuniform meshes. Compared to the Baumann-Oden method and the NIPG method, the optimal convergence is recovered for even order P k polynomial approximations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.