Abstract

Intravascular ultrasound (IVUS) imaging is widely known as a powerful interventional imaging modality for diagnosing atherosclerosis, and for treatment planning. In this regard, the detection of lumen and media–adventitia (MA) borders is considered to be a vital process. However, the manual detection of these two borders by the physician is cumbersome due to the large number of frames in a sequence. In addition, no approved universal automatic method has been presented so far due to the great diversity in the appearance of the coronary artery in the images acquired by different IVUS systems. To this end, the present study aimed to provide a new border search theory on the radial profile, based upon the nonparametric statistical approach, and to develop a generic and fully automatic three-step process for extracting the lumen and MA borders in IVUS frames based on the proposed theory. Thereafter, the proposed theory and three-step process were evaluated on synthetic images, as well as on a test set of standard publicly available images, respectively. The results showed that our three-step process could segment the borders with ≥0.82 and with ≥0.75 Jaccard measure (JM) to manual borders in IVUS frames acquired by the 20 MHz and 40 MHz probes, respectively. Based on the results, the lumen and MA borders can be extracted automatically, and the border extraction process can be implemented in parallel for a polar image due to the capability of the present proposed method to estimate the borders for each angle independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.