Abstract
Sigma-delta modulators use a noise-shaping technique to curtail the noise power in the band of interest during digital-to-analog conversion. Error feedback modulator employs an efficient noise transfer function for time varying inputs than any other sigma-delta modulators. However, the efficiency of the conventional noise transfer function degrades and the quantizer saturation issue provokes when the input signal reaches to full scale. This work proposes a new noise transfer function which is a combination of transfer functions of two-stage Feed-forward delays and a novel Hybrid multi-stage noise shaping-error feedback sigma-delta modulator. The noise transfer function of two-stage Feed-forward delays mitigates the concern of quantizer saturation. The noise transfer function offered by the Hybrid multi-stage noise shaping-error feedback architecture provides sustainable solutions to limit cycles and idle tones. The simulation concludes that the proposed noise-shaping approach obtains comparatively high signal-to-quantization noise ratio than the conventional error feedback modulators. Other performance parameters like spurious-free dynamic range, effective number of bits and signal-to-noise plus distortion ratio are also significantly improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.