Abstract

Discrete manufacturing process design optimization can be difficult, due to the large number of manufacturing process design sequences and associated input parameter setting combinations that exist. Generalized hill climbing algorithms have been introduced to address such manufacturing design problems. Initial results with generalized hill climbing algorithms required the manufacturing process design sequence to be fixed, with the generalized hill climbing algorithm used to identify optimal input parameter settings. This paper introduces a new neighborhood function that allows generalized hill climbing algorithms to be used to also identify the optimal discrete manufacturing process design sequence among a set of valid design sequences. The neighborhood function uses a switch function for all the input parameters, hence allows the generalized hill climbing algorithm to simultaneously optimize over both the design sequences and the inputs parameters. Computational results are reported with an integrated blade rotor discrete manufacturing process design problem under study at the Materials Process Design Branch of the Air Force Research Laboratory, Wright Patterson Air Force Base (Dayton, Ohio, USA). [S1050-0472(00)01002-3]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.