Abstract
Targeted photodynamic therapy (TPDT) involves the administration of a photosensitizer (PS) conjugated with a targeting moiety followed by light activation. The systemic toxicity associated with conventional therapy may thus be significantly reduced in TPDT due to the dual selectivity provided by the spatial localization of the illumination as well as the target-localizing ability of the conjugate. Herein, a photo-immuno-conjugate-associating-liposome (PICAL) for TPDT has been developed in which the FDA approved benzoporphyrin derivative monoacid A (BPD) and the Cetuximab antibody for epidermal growth factor receptor (EGFR) were associated into a stable Preformed Plain Liposome (PPL) by passive physical adsorption. Results have shown that the BPD molecules adsorbed into PICAL have stable optical behavior and a higher fluorescence quantum yield than free-BPD. The Cetuximab adsorbed into PPL selectively binds to cells that overexpress EGFR. The inhibition of EGFR signaling by PICAL has enhanced PDT-mediated ovarian cancer cell death. From the Clinical EditorIn this basic science study, a photo-immuno-conjugate-associating-liposome for targeted photodynamic therapy is investigated. The FDA-approved benzoporphyrin derivative monoacid A and an epidermal growth factor receptor antibody were assembed into a stable Preformed Plain Liposome (PPL) by passive physical adsorption. The authors demonstrate therapeutic efficacy of the above construct in an ovarian tumor system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.