Abstract

The N and Fe doped carbon dot (CDNFe) was prepared by microwave procedure. Using CDNFe as the nano-substrate, fipronil (FL) as the template molecule and α-methacrylic acid as the functional monomer, the molecular imprinted polymethacrylic acid nanoprobe (CDNFe@MIP) with difunction was synthesized by microwave procedure. The CDNFe@MIP was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier infrared spectroscopy, and other techniques. The results show that the nanoprobe not only distinguish FL but also has a strong catalytic effect on the HAuCl4–Na2C2O4 nanogold indicator reaction. When the nanoprobes specifically recognize FL, their catalytic effect is significantly reduced. Since the AuNPs generated by HAuCl4 reduction have strong surface-enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) effects, a SERS/RRS dual-mode sensing platform for detecting 5–500 ng/L FL was constructed. The new analytical method was applied to detect FL in food samples with a relative standard deviation (RSD) of 3.3–8.1 % and a recovery rate of 94.6–104.5 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call