Abstract

ABSTRACTObservations in the lowest Murchison Widefield Array (MWA) band between 75 and 100 MHz have the potential to constrain the distribution of neutral hydrogen in the intergalactic medium at redshift ∼13–17. Using 15 h of MWA data, we analyse systematics in this band such as radio-frequency interference (RFI), ionospheric and wide field effects. By updating the position of point sources, we mitigate the direction-independent calibration error due to ionospheric offsets. Our calibration strategy is optimized for the lowest frequency bands by reducing the number of direction-dependent calibrators and taking into account radio sources within a wider field of view. We remove data polluted by systematics based on the RFI occupancy and ionospheric conditions, finally selecting 5.5 h of the cleanest data. Using these data, we obtain 2σ upper limits on the 21 cm power spectrum in the range of $0.1~ h~{\mathrm{ Mpc}}^{-1}\lessapprox k \lessapprox 1 ~ ~h~{\mathrm{ Mpc}}^{-1}$ and at z = 14.2, 15.2, and 16.5, with the lowest limit being $6.3\times 10^6 ~\rm mK^2$ at $k=0.14 ~h~{\mathrm{ Mpc}}^{-1}$ and at z = 15.2 with a possibility of a few per cent of signal loss due to direction-independent calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.