Abstract
A lot of methods have been proposed for the kinematic chain isomorphism problem. However, the tool is still needed in building intelligent systems for product design and manufacturing. In this paper, we design a novel multivalued neural network that enables a simplified formulation of the graph isomorphism problem. In order to improve the performance of the model, an additional constraint on the degree of paired vertices is imposed. The resulting discrete neural algorithm converges rapidly under any set of initial conditions and does not need parameter tuning. Simulation results show that the proposed multivalued neural network performs better than other recently presented approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computing and Information Science in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.