Abstract

A new multi-scale model for ferroelectric materials is proposed. It can model hysteresis effect through a bistable “locked/unlocked” state for the grains, and the domain wall motion is described through free energy functions that pertain the elasto-electric coupling symmetry. The model is able to consider for electro-mechanical coupling with simultaneous electrical and mechanical loadings. The model also captures the field distribution in the polycrystal which has a strong influence on the macroscopic response of these materials. The comparison with experimental data shows that this new model is able to qualitatively and quantitatively describe electrically induced hysteresis for various levels of compressive stress, and mechanically induced hysteresis as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call