Abstract

A multilevel finite difference time domain (FDTD) subgridding scheme coupled with interpolation based on finite difference approximation to the Laplacian operator is presented. In order to model a structure with small components using FDTD method, the accuracy of the results can be improved by utilizing a new multilevel FDTD subgridding scheme. In this scheme, an FD-Laplacian interpolation is applied in both the coarse main grids and the subgrids to further reduce the error. The validation of the scheme is tested by computing the resonant frequencies of two cavities and solving a scattering problem. The results are compared with solutions for traditional FDTD and other FDTD subgridding schemes published in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.