Abstract

This paper presents a novel recursive algorithm for generating higher order multidimensional (m-D) discrete cosine transform (DCT) by combining the computation of 2/sup m/ identical lower order (smaller size) DCT architectures. One immediate outcome of our results is the true scalability of the DCT computation. Basically, an m-D DCT computation can be constructed from exactly one stage of smaller DCT computations of the same dimension. This is useful for both hardware and software solutions, in which a very efficient smaller size m-D DCT core has been developed, and a larger DCT computation is required. The resulting DCT networks have very simple modular structure, highly regular topology, and use simple arithmetic units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.