Abstract
Fusion of image segmentations using consensus clustering and based on the optimization of a single criterion (commonly called the median partition based approach) may bias and limit the performance of an image segmentation model. To address this issue, we propose, in this paper, a new fusion model of image segmentation based on multi-objective optimization which aims to avoid the bias caused by a single criterion and to achieve a final improved segmentation. The proposed fusion model combines two conflicting and complementary segmentation criteria, namely; the region-based variation of information (VoI) criterion and the contour-based F-Measure (precision-recall) criterion with an entropy-based confidence weighting factor. To optimize our energy-based model we use an optimization procedure derived from the iterative conditional modes (ICM) algorithm. The experimental results on the Berkeley database with manual ground truth segmentations clearly show the effectiveness and the robustness of our multi-objective median partition based approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.