Abstract

Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximize the profit of the Citrus supply chain network. Due to the complexity of the model when considering large-scale samples, two well-known meta-heuristic algorithms such as Ant Colony Optimization (ACO) and Simulated Annealing (SA) algorithms have been utilized. Additionally, a new multi-objective ACO algorithm based on a set of non-dominated solutions form the Pareto frontier developed to solve the mathematical model. An extensive comparison based on different measurements analyzed to find a performance solution for the developed problem in the three sizes (small, medium, and large-scale). Finally, the various outcomes of numerical experiments indicate that the MOACO algorithm is more reliable than other algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.