Abstract
A new genetic algorithms based multi-objective optimization algorithm (NMGA) has been developed during study. It works on a neighborhood concept in the functional space, utilizes the ideas on weak dominance and ranking and uses its own procedures for population sizing. The algorithm was successfully tested with some standard test functions, and when applied to a real-life data of the hot-rolling campaign of an integrated steel plant, it outperformed another recently developed multi-objective evolutionary algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.