Abstract

This paper studies the lot-sizing problem in Material Requirements Planning/Group Technology (MRP/GT) systems. A GT production cell is designed to produce many families of components. A major setup is required when switching from manufacturing one family of components to another family, and a minor setup is needed when switching from manufacturing a component type to another component type within the same family. Inventory holding cost is incurred if inventory level is positive, and inventory shortage cost is incurred if inventory level is negative, that is, backordering. The objective of the proposed lot-sizing problem is to minimize the sum of major and minor setup costs, holding and shortage costs, and regular production cost, and to meet simultaneously the demand requirements. The proposed problem is modelled into a linear integer program, a heuristic method to solve the problem is proposed, and a simulation experiment conducted to evaluate the performance of the proposed heuristic and some existing heuristics. The computational results show that the proposed heuristic is useful to reduce the total cost significantly over a wide variety of simulated environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.