Abstract

This paper describes a new maximum-power-point-tracking (MPPT) method focused on low-power (<; 1 W) photovoltaic (PV) panels. The static and dynamic performance is theoretically analyzed, and design criteria are provided. A prototype was implemented with a 500-mW PV panel, a commercial boost converter, and low-power components for the MPPT controller. Laboratory measurements were performed to assess the effectiveness of the proposed method. Tracking efficiency was higher than 99.6%. The overall efficiency was higher than 92% for a PV panel power higher than 100 mW. This is, in part, feasible due to the low power consumption of the MPPT controller, which was kept lower than 350 μW. The time response of the tracking circuit was tested to be around 1 s. Field measurements showed energy gains higher than 10.3% with respect to a direct-coupled solution for an ambient temperature of 26°C. Higher gains are expected for lower temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.