Abstract

Trisomy 21 (Ts21) is the most common live-born human aneuploidy and results in a constellation of features known as Down syndrome (DS). Ts21 is a frequent cause of congenital heart defects and the leading genetic cause of mental retardation. Although overexpression of a gene(s) or gene cluster on human chromosome 21 (Chr 21) or the genome imbalance by Ts21 has been suggested to play a key role in bringing about the diverse DS phenotypes, little is known about the molecular mechanisms underlying the various phenotypes associated with DS. Four approaches have been used to model DS to investigate the gene dosage effects of an extra copy of Chr 21 on various phenotypes; 1) Transgenic mice overexpressing a single gene from Chr 21, 2) YAC/BAC/PAC transgenic mice containing a single gene or genes on Chr 21, 3) Mice with intact/partial trisomy 16, a region with homology to human Chr 21 and 4) Human Chr 21 transchromosomal (Tc) mice. Here we review our new model system for the study of DS using the Tc technology, including the biological effects of an additional Chr 21 in vivo and in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.