Abstract

We have developed a new simulation code aimed at studying the stellar dynamics of a galactic central star cluster surrounding a massive black hole. In order to include all the relevant physical ingredients (2-body relaxation, stellar mass spectrum, collisions, tidal disruption, ...), we chose to revive a numerical scheme pioneered by Hénon in the 70's (Hénon [CITE],a; Hénon [CITE]. It is basically a Monte Carlo resolution of the Fokker-Planck equation. It can cope with any stellar mass spectrum or velocity distribution. Being a particle-based method, it also allows one to take stellar collisions into account in a very realistic way. This first paper covers the basic version of our code which treats the relaxation-driven evolution of a stellar cluster without a central BH. A technical description of the code is presented, as well as the results of test computations. Thanks to the use of a binary tree to store potential and rank information and of variable time steps, cluster models with up to particles can be simulated on a standard personal computer and the CPU time required scales as with the particle number . Furthermore, the number of simulated stars needs not be equal to but can be arbitrarily larger. A companion paper will treat further physical elements, mostly relevant to galactic nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.