Abstract
Air pollution is classified as one of the most dangerous type on the human health, the environment, and the ecosystem. However, air pollution results in climate change and affects people’s health. For a number of years, monitoring the air quality has become a very urgent and necessary topic. Moreover, safety and health have been attracting attention as one of the important topics to evaluate, firstly, the degree of air pollution and predict pollutant concentrations accurately. Then, it is crucial to establish a more scientific air quality monitoring to ensure the quality of life. In this paper, new reduced air quality monitoring is suggested to enhance the Fault Detection (FD) of an air quality monitoring network. Furthermore, a sensor FD procedure based on Reduced Kernel Partial Least Squares (RKPLS) is proposed to monitor an air quality monitoring network. The main contribution of the suggested procedure is to enhance the FD of an air quality monitoring network in terms of computation time and false alarm rate, using just the important latent components, compared to standard Kernel Partial Least Squares (KPLS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.