Abstract

A molecular mechanics force field for blue copper proteins has been developed, based on a rigid potential energy surface scan of the Cu(II)/His/His/Cys/Met chromophore, using DFT (B3LYP) calculations and the AMBER force field for the protein backbone. The strain-energy-minimized structures of the model chromophore alone are in excellent agreement with the DFT-optimized structure, and those of the entire set of cupredoxins (five structures are considered) are, within the experimental error limits, in good agreement with the single crystal structural data. However, the structural variation in the computed structures is much smaller than those in the experimental structures. It is shown that, due to the large error limits in the experimental data, a validation of the force field with experimental structural data is impossible because, within the error limits, all experimental structures considered are virtually identical. A validation on the basis of spectroscopic data and their correlation with experimental and computed structural data is proposed, and, as a first example, the correlation of intensity ratios of the charge transfer transitions with a specific distortion mode is presented. The quality of the correlation, using the computed structures, is higher than that with the X-ray structures, and this indicates that the computed structures are meaningful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.