Abstract

Mass transfer process involved in the immersion precipitation of polyurethane/dimethylformamide (DMF)/water system was investigated. The set of diffusion equations describing the local composition of the membrane solution as a function of space coordinate and time were solved by numerical method, and the composition path in the phase diagram was obtained. Instead of boundary conditions based on the instantaneous equilibrium assumption between membrane solution and coagulation bath, new boundary conditions were set up by using mass transfer formalism at the interface which is especially valid in the condition that the mass transfer rate is extremely rapid. Phase separation phenomena during immersion precipitation were taken into account to continue the calculation after phase separation. The calculated results showed that the chance of phase separation via spinodal decomposition increases with the strength of nonsolvent, addition of nonsolvent to the dope solution, and the use of more hydrophobic polymer. The proposed model is the improvement of the previous works eliminating the equilibrium assumption at the interface and extending the calculation after phase separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.