Abstract

Abstract In this paper, we present some results on error detection and correction in a modular neurocomputer that are based on redundant residue number systems. The error correction method developed below involves the modified Chinese Remainder Theorem with fractions and uses a Hopfield neural network to correct the errors. The suggested approach eliminates the need for extending the bases of a residue number system, a costly operation required in case of syndrome decoding with error syndromes calculation on the control bases of the system. Also the approach does not utilize the projection method, another costly operation intended to localize errors (i.e., to detect the moduli associated with faulty digits). The well-known procedures mentioned above seem inefficient in terms of practical implementation, as they employ a mixed radix number system: transition to such a system is iterative and may affect the performance of a whole neurocomputer. Owing to the exclusion of these costly operations, the suggested approach significantly simplifies error correction procedures for integer numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.