Abstract

A new mathematical model is proposed for the estimation of CO2 gasification kinetics of different rank coals and ash contents. There are no previous reports on the determination of the conversion rate or even residence time of CO2 or steam gasification based on coal characterization and for a wide range of ash content. This new approach can be used to infer the residence time and other parameters required for reactor design and operation optimization of newly mined coals or coal mixtures used as feedstock.The coal micropore surface area and the alkaline content determined by the ash composition were proved to be the most significant variables influencing the gasification rate. These variables were correlated to formulate a semi-empirical expression based on the Arrhenius equation. An equation to infer residence time, independent of the kinetic model, is also presented.The new equation is important in understanding the catalytic effect of the alkaline content in the temperature range where the chemical reaction is the controlling step. It can also be used as the corresponding term of the chemical reaction in a gas–solid kinetic model when working at higher temperatures. This new approach is valid, if there is not loss of alkali and alkaline earth metals due to sublimation or melting, which results in a glassy slag structure. The proposed model has direct industrial application in simulation of gasifiers’ performance with the knowledge of only coal characterization properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.