Abstract
The present research work proposes a new systematic approach to the problem of model-reduction for nonlinear dynamical systems. The formulation of the problem is conveniently realized through a system of singular first-order quasi-linear invariance partial differential equations (PDEs), and a rather general explicit set of conditions for solvability is derived. In particular, within the class of analytic solutions, the aforementioned set of conditions guarantees the existence and uniqueness of a locally analytic solution. The solution to the above system of singular PDEs is then proven to represent the slow invariant manifold of the nonlinear dynamical system under consideration exponentially attracting all dynamic trajectories. As a result, an exact reduced-order model for the nonlinear system dynamics is obtained through the restriction of the original system dynamics on the aforementioned slow manifold. The local analyticity property of the solution’s graph that corresponds to the system’s slow manifold enables the development of a series solution method, which allows the polynomial approximation of the system dynamics on the slow manifold up to the desired degree of accuracy and can be easily implemented with the aid of a symbolic software package such as MAPLE. Finally, the proposed approach and method is evaluated through an illustrative biological reactor example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.