Abstract

A collision between two bodies is a usual phenomenon in many engineering applications. The most important problem with the collision analysis is determining the hysteresis damping factor or the hysteresis damping ratio. The hysteresis damping ratio is related to the coefficient of restitution. In this paper, an explicit expression is determined for this relation. For this reason, a parametric expression is considered for the relation between the deformation and its velocity of the contact process. This expression consists of two unknown constants. Using the energy balance, a new explicit parametric expression between the hysteresis damping factor and the coefficient of restitution is derived. For determining the unknown constants, the root mean square (RMS) of the hysteresis damping ratio of this new expression with respect to the numerical model is minimized. This new model is completely suitable for the whole range of the coefficient of restitution. So, the new model can be used in the hard and soft impact problems. Finally, three numerical examples of two colliding bodies, the classic bouncing ball problem, the resilient impact damper, and a planar slider–crank mechanism, are presented and analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.