Abstract

Models depicting the plate kinematic development of the Indian Ocean have a range of applications including in paleogeographic studies and in formulating and testing ideas about plume/plate interactions. Until now, these applications have been forced to tolerate egregious model/observation inconsistencies concerning the relative motion history of India and Madagascar. Whilst the Phanerozoic record of these motions begins with ∼90 Ma basalts that erupted along a narrow rift basin, all modern plate kinematic models for the Indian Ocean predict hundreds of kilometres of relative motions, in diverse and conflicting senses, over several tens of millions of years prior to the eruptions. The diversity of these predicted motions suggests they are artefacts that arise from differing approaches taken to modelling the development of the eastern and western parts of the ocean, rather than a reflection of insufficient or absent geological observations. In this contribution, I present a new model for the early plate kinematic development of the Indian Ocean that is constrained by observational evidence for relative plate motion azimuths in the Enderby and western Bay of Bengal basins and by explicitly maintaining a rigid mid- and early Cretaceous Indo-Malagasy body. This approach requires the model to feature two small tectonic plates between the continental margins of eastern India and East Antarctica. The older of the two, Mandara, is an intraoceanic plate in the Enderby Basin that may have formed in relation to delivery of excess melt from the Kerguelen plume to the basin's mid-ocean ridge. The younger plate, Vasuki, in the western Bay of Bengal Basin, also accommodated plume-related melt at its boundaries, in its case from the Marion and possibly also the Crozet plume. The model shows this plate transporting Sri Lanka ∼800 km southwards along the eastern Indian continental margin to its present location. The model also requires the presence of around half a million square kilometres of continental crust beneath the Kerguelen Plateau, which lies within the range of published observation-led estimates of its extent. Neither the absence of evidence for relative motions between India and Madagascar prior to ∼90 Ma, nor the modelled Euler rotation pole's location afterwards, are consistent with suggestions that traction forces related to the ascent of the Marion plume drove the mid-Cretaceous onset of subduction in the western Neotethys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call