Abstract

We present a new model for the full shape of large-scale the power spectrum based on renormalized perturbation theory. To test the validity of this prescription, we compare this model against power spectra measured in a suite of 50 large volume, moderate resolution N-body simulations. Our results indicate that this simple model provides an accurate description of the full shape of the power spectrum taking into account the effects of non-linear evolution, redshift-space distortions and halo bias for scales k < 0.15 h/Mpc, making it a valuable tool for the analysis of forthcoming galaxy surveys. Even though its application is restricted to large scales, this prescription can provide tighter constraints on the dark energy equation of state parameter w_{DE} than those obtained by modelling the baryonic acoustic oscillations signal only, where the information of the broad-band shape of the power spectrum is discarded. Our model is able to provide constraints comparable to those obtained by applying a similar model to the full shape of the correlation function, which is affected by different systematics. Hence, with accurate modelling of the power spectrum, the same cosmological information can be extracted from both statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.