Abstract

The tensile creep rate of most commercial grades of Si3N4 increases strongly with stress. Although the usual power‐law functions can represent the creep data, the data often show curvature and systematic variations of slope with temperature and stress. In this article, we present a new approach to understanding the creep of ceramics, such as Si3N4, where a deformable second phase bonds a deformation‐resistant major phase. A review of experimental data suggests that the rate of formation and growth of cavities in the second phase controls creep in these materials. The critical step for deformation is the redistribution of the second phase away from the cavitation site to the surrounding volume. The effective viscosity of the second phase and the density of active cavities determine the creep rate. Assuming that the hydrostatic stresses in pockets of the second phase are normally distributed leads to a model that accurately describes the tensile creep rate of grades of Si3N4. In this model, the creep rate increases exponentially with the applied stress, is independent of Si3N4 grain size, is inversely proportional to the effective viscosity of the deformable phase, and is proportional to the cube of the volume fraction of the deformable phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.