Abstract

This paper develops a new model for surface soil moisture (SSM) retrieval from CBERS-02B images. The paper first analyzes the existing SSM retrieval model from Landsat TM imagery and establishes the spectral radiance relationship of each band between Landsat TM and CBERS-02B. The model associated parameters including mean reflectance, mean atmospheric transmittance, and mean sun radial brightness of each band between Landsat TM and CBERS-02B is established. The model is finally adjusted by considering the differences of response frequency and sensitivity in the two satellite sensors. Two test areas, Jili Village of Laibin county, Guangxi Province, China and Yuanjiaduan Village of Jiujiang County, JiangXi Province, China are chosen to verify the correctness of the developed model. The SSMs retrieved from Landsat TM imagery are chosen as references. The accuracy of the proposed model is evaluated through correlation coefficient and root-mean-square error (RMSE) relative to the SSMs retrieved from Landsat TM images. The verified results discover that the relative accuracy of the average SSMs retrieved by the proposed model from CBERS-02B can reach over 91.0% when compared to the SSMs retrieved from Lansat TM. In addition, six types of lands are used to further evaluate the accuracy of the proposed model. The experimental results in two areas show that the correlation coefficient and the RMSE between two SSMs from CBERS-02B and Landsat TM achieves over 0.9 and 0.011 (m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> /m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ), respectively, in both rocky desertification land and dry land; achieve over 0.81 and 0.09 (m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> /m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ), respectively, in rice field, shrub land, and woodland. These results demonstrate that the model developed in this paper can effectively calculate the SSMs for CBERS-02B satellite imagery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.