Abstract

Intact blood supply by microcirculation to a wounded site is an indispensable prerequisite for normal tissue regeneration. However, microvascular changes taking place in the healing process of skin wounds are not understood due to the fact that only few models allow chronic in vivo studies on skin microcirculation. Therefore, we have modified the hairless mouse ear model with the purpose of a quantitative in vivo study of microhemodynamic changes throughout the healing process. Following the creation of a standardized skin wound on the ear of the homozygous hairless mouse (hr/hr), microvessel diameters, red blood cell velocities, wet weight, and leucocyte content of the ear tissue were determined. Surface area of the wound was assessed until complete closure was achieved. By repeated measurements at identical sites over the entire healing period, a distinct pattern of microvascular changes could be observed: microvessel diameters increased to a maximum a few days after wound creation, whereas red blood cell velocities reached their highest values at a later point in time and were still elevated after complete reepithelization of the wounds. Edema and leucocyte content of the ear tissue was most prominent in the early healing phase and gradually decreased to normal values thereafter. These results demonstrate changes of the microvasculature of the hairless mouse ear to injury, which are in accordance to other more indirect studies on this topic. Therefore, we conclude that the model presented is suitable for prolonged quantitative analysis of microcirculation during normal wound healing and may be used to assess microvascular changes taking place during wound healing in pathologically altered tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.