Abstract

The present study extends the two-dimensional analysis of peristaltic motion to include a compliant wall. The fluid-solid interaction problem is investigated by considering equations of motion of both the fluid and the deformable boundaries. The driving mechanism of the muscle is represented by assuming the channel walls to be compliant. A perturbation solution of the stream function for zeroth, first and second order in a small amplitude ratio is obtained. The phenomenon of the “mean flow reversal” is found to exist both at the center and at the boundaries of the channel. The effect of wall damping, wall elastance and wall tension on the mean axial velocity and reversal flow has been investigated. The numerical results show that the possibility of flow reversal increases by increasing the wall damping and decreases by increasing the wall elastance and wall tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call