Abstract

In the era of IoT gaining traction, attacks on IoT-enabled devices are the order of the day that emanates the need for more protected IoT networks. IoT's key feature deals with massive amounts of data sensed by numerous heterogeneous IoT devices. Numerous machine learning techniques are used to collect data from different types of sensors on the objects and transform them into information relevant to the application. Furthermore, business and data analytics algorithms help in event prediction based on observed behavior and information. Routing information securely over the internet with limited resources in IoT applications is a key problem. The study proposes a model for detecting network anomalies in IoT devices to enhance the security of the devices. The study employed the IoT Botnet dataset, and K-fold cross-validation tests were used for validating the values of evaluation metrics. The average values of Accuracy, Precision, Recall, and F Score was 97.4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.