Abstract

A new model has been developed to account for adduct formation on multiply charged peptides observed in negative ion electrospray mass spectrometry. To obtain a stable adduct, the model necessitates an approximate matching of apparent gas-phase basicity (GB(app)) of a given proton bearing site on the peptide with the gas-phase basicity (GB) of the anion attaching at that site. Evidence supporting the model is derived from the fact that for [Glu] Fibrinopeptide B, higher GB anions dominated in adducts observed at higher negative charge states, whereas lower GB anions appeared predominately in lower charge state adducts. Singly charged adducts were only observed for lower GB anions: HSO(4)(-), I(-), CF(3)COO(-). Ions that have medium GBs (NO(3) (-), Br(-), H(2)PO(4)(-)) only form adducts having -2 charge states, whereas Cl(-) (higher GB) can form adducts having -3 charge states. The model portends that (1) carboxylate groups are much more basic than available amino groups; (2) apparent GBs of the various carboxylate groups on peptides do not vary substantially from one another; and (3) apparent GBs of the individual carboxylate and amino sites do not behave independently. This model was developed for negative ion attachment but an analogous mechanism is also proposed for the positive ion mode wherein (1) binding of a neutral at an amino site polarizes this amino group, but hardly affects apparent GBs of other sites; (2) proton addition (charge state augmentation) at one site can decrease the instrinsic GBs of other potential protonation sites and lower their apparent GBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.