Abstract

Immiscible displacement is regarded as the superposition of forward flows of both water and oil, due to injection of water into the medium, and of additional forward flow of water coupled with reverse flow of oil, caused by the existence of capillary pressure gradients. The model has been evaluated numerically for the prediction of the evolution of saturation profiles in waterfloods covering a wide range of water injection rates. In agreement with experimentation, saturation profiles ranging from a completely flat shape to piston-shape, depending on the injection rate, have been obtained. Also in agreement with experimentation, numerical evaluation of the model for the case of a closed system with an initial step-function saturation profile has predicted a gradual spreading of the piston front into S-shaped profiles with an increasing variance. The final profile corresponds to uniform saturation everywhere in the medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.