Abstract

This paper presents the development and implementation of a new model for bypass and natural transition prediction using Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD), based on modification of two-equation, linear eddy-viscosity turbulence models. The new model is developed herein based on considerations of the universal character of transitional boundary layers that have recently been documented in the open literature, and implemented into a popular commercial CFD code (FLUENT) in order to assess its performance. Two transitional test cases are presented: (1) a boundary layer developing on a flat heated wall, with free-stream turbulence intensity Tu∞ ranging from 0.2 to 6%; and (2) flow over a turbine stator vane, with chord Reynolds number 2.3×105, and Tu∞ from 0.6 to 20%. Results are presented in terms of Stanton number, and compared to experimental data for both cases. Results show good agreement with the test cases and suggest that the new approach has potential as a predictive tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.