Abstract
The development of fast and reliable protocols to determine the characteristics of building materials is of importance in order to develop environmentally friendly houses with an efficient energy design. In this article heat flux evolution on different types of clay and concrete bricks has been studied using a guarded hot-plate. The studied bricks were purchased from local commercially available sources and included a solid face brick and a range of honeycombed and perforated bricks. From the data collected a new model to study heat flux is proposed. This model is based on the shape of the typical sigmoidal curves observed for the time dependent heat flux evolution. The model allows the calculation of the thermal resistance ( R) and the heat flux in the steady-state ( φ ∞). The model also calculates two new parameters, t B and τ B. t B represents the time at which half φ ∞ is attained. This parameter ( t B) has additionally been found to be dependent on the thermal diffusivity and the geometric characteristics of the brick.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.