Abstract
Consider the generalized Kuramoto–Sivashinsky (gKS) equation. It is a model prototype for a wide variety of physical systems, from flame-front propagation, and more general front propagation in reaction–diffusion systems, to interface motion of viscous film flows. Our aim is to develop a systematic and rigorous low-dimensional representation of the gKS equation. For this purpose, we approximate it by a renormalization group equation which is qualitatively characterized by rigorous error bounds. This formulation allows for a new stochastic mode reduction guaranteeing optimality in the sense of maximal information entropy. Herewith, noise is systematically added to the reduced gKS equation and gives a rigorous and analytical explanation for its origin. These new results would allow one to reliably perform low-dimensional numerical computations by accounting for the neglected degrees of freedom in a systematic way. Moreover, the presented reduction strategy might also be useful in other applications where classical mode reduction approaches fail or are too complicated to be implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.