Abstract

Abstract In this paper a new modified couple stress model is developed for the Saint–Venant torsion problem of micro-bars of arbitrary cross-section. The proposed model is derived from a modified couple stress theory and has only one material length scale parameter. Using a variational procedure the governing differential equation and the associated boundary conditions are derived in terms of the warping function. This is a fourth order partial differential equation representing the analog of a Kirchhoff plate having the shape of the cross-section and subjected to a uniform tensile membrane force with mixed Neumann boundary conditions. Since the fundamental solution of the equation is known, the problem could be solved using the direct Boundary Element Method (BEM). In this investigation, however, the Analog Equation Method (AEM) solution is applied and the results are cross checked using the Method of Fundamental Solutions (MFS). Several micro-bars of various cross-sections are analyzed to illustrate the applicability of the developed model and to reveal the differences between the current model and an existing one which, however, contains two additional constants related to the microstructure. Moreover, useful conclusions are drawn from the micron-scale torsional response of micro-bars, giving thus a better insight in the gradient elasticity approach of the deformable bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.