Abstract

In this study, a new microfluidic-chip coupled with micro solid phase extraction (μ-SPE) and a RGB detection system was designed. The method was used for extraction and simultaneous determination of trace amounts of dyes with different acidic–basic properties. Erythrosine (Ery) and Crystal Violet (CV) were selected as acidic and basic model analytes, respectively. The first step of this method is based on the on-chip electromembrane extraction (CEME) of analytes from aqueous solution. The utilized microfluidic system is a single compartment that composed of three polymethyl metacrylate plates (with sandwiched structures) patterned with palm shaped helix channels. The device consisted one pair of platinum electrodes that were embedded in the acceptor phase channels in each side. The middle part was cut and used as the path of the sample. The extracted analytes by CEME were passed through the micro-packed column containing strong cation and anion exchanger sorbents respectively. Two adsorbents were separated by a polypropylene frit and sealed on each side by two polypropylene frites. Following dye adsorption on the sorbents, the colors that emerged were promptly evaluated using RGB colorimetry on a smartphone. Central composite design was used to analyze and optimize the effective parameters on extraction efficiency. The relative standard deviations (RSDs%) based on five replicate measurements were less than 7.8% for RGB and 8.6% for the spectrophotometry technique under ideal conditions. Image analysis using a smartphone yielded LOD values of 15.0 and 10.5 μg L−1 for Ery and CV, respectively. The CEME- μ-SPE -RGB approach produced findings that were equivalent to those obtained by spectrophotometry. Finally, the approach was used to accurately determine Ery and CV in water samples, yielding good relative recoveries (recovery ≥94.0).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call