Abstract

Net pay thickness is defined as that portion of a reservoir which contains economically producible hydrocarbons with today’s technology, prices, and costs. This thickness is a key parameter of the volumetric calculation of in-place hydrocarbons, well test interpretation, and reservoir characterization. A reservoir interval is considered as net pay when it contains hydrocarbons that can flow at an economic rate. Therefore, to define net pay, cutoffs of hydrocarbon storage properties besides flow properties of reservoir rock are necessary. Frequently, petrophysical log-derived rock storage properties like porosity and water saturation are linked to core measured properties like permeability to find a relation between them. Then, by use of a fixed limiting value for permeability, log-derived properties cutoffs are determined. The basic problem of these methods is related to permeability cutoff, since in most cases there is no knowledge about it, and the permeability cutoff can differ from field to field or even well to well. A new methodology has been developed to find a logical permeability cutoff for gas reservoirs which can differ for different wells and/or fields. This technique is based on gas flow through porous media in tight rocks. Accordingly, a relationship between porosity and permeability is derived as a cutoff value at reservoir pressure and temperature, which is considered as a discriminator plot. Then, the core data of the specified reservoir are added to this plot and the data points reflecting net pay zone are identified. This technique has been applied to four real gas reservoirs in Iran and indicated acceptable results confirmed by the drill stem test (DST) and production data. The results show that the proposed procedure is less dependent on experts’ experiences and acts as a straightforward and powerful tool for the refinement of net pays. In addition, the cutoff values calculated from this method contain a scientific base supporting the main procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call