Abstract

Radial applanation tonometry is a well-established technique for hemodynamic monitoring and is becoming popular in affordable non-invasive wearable healthcare electronics. To assess the central aortic pressure using radial-based measurements, there is an essential need to develop mathematical approaches to estimate the central pressure waveform. In this study, we propose a new Fourier-based machine learning (F-ML) methodology to transfer non-invasive radial pressure measurements to the central pressure waveform. To test the method, collection of tonometry recordings of the radial and carotid pressure measurements are used from the Framingham Heart Study (2640 individuals, 55 % women) with mean (range) age of 66 (40–91) years. Method-derived estimates are significantly correlated with the measured ones for three major features of the pressure waveform (systolic blood pressure, r=0.97, p < 0.001; diastolic blood pressure, r=0.99, p < 0.001; and mean blood pressure, r=0.99, p < 0.001). In all cases, the Bland-Altman analysis shows negligible bias in the estimations and error is bounded to 5.4 mmHg. Findings also suggest that the F-ML approach reconstructs the shape of the central pressure waveform accurately with the average normalized root mean square error of 5.5 % in the testing population which is blinded to all stages of machine learning development. The results show that the F-ML transfer function outperforms the conventional generalized transfer function, particularly in terms of reconstructing the shape of the central pressure waveform morphology. The proposed F-ML transfer function can provide accurate estimates for the central pressure waveform, and ultimately expand the usage of non-invasive devices for central hemodynamic assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call