Abstract

Purpose The purpose of this paper is to propose a new methodology that handles the issue of the dynamic behavior of customers over time. Design/methodology/approach A new methodology is presented based on time series clustering to extract dominant behavioral patterns of customers over time. This methodology is implemented using bank customers’ transactions data which are in the form of time series data. The data include the recency (R), frequency (F) and monetary (M) attributes of businesses that are using the point-of-sale (POS) data of a bank. This data were obtained from the data analysis department of the bank. Findings After carrying out an empirical study on the acquired transaction data of 2,531 business customers that are using POS devices of the bank, the dominant trends of behavior are discovered using the proposed methodology. The obtained trends were analyzed from the marketing viewpoint. Based on the analysis of the monetary attribute, customers were divided into four main segments, including high-value growing customers, middle-value growing customers, prone to churn and churners. For each resulted group of customers with a distinctive trend, effective and practical marketing recommendations were devised to improve the bank relationship with that group. The prone-to-churn segment contains most of the customers; therefore, the bank should conduct interesting promotions to retain this segment. Practical implications The discovered trends of customer behavior and proposed marketing recommendations can be helpful for banks in devising segment-specific marketing strategies as they illustrate the dynamic behavior of customers over time. The obtained trends are visualized so that they can be easily interpreted and used by banks. This paper contributes to the literature on customer relationship management (CRM) as the proposed methodology can be effectively applied to different businesses to reveal trends in customer behavior. Originality/value In the current business condition, customer behavior is changing continually over time and customers are churning due to the reduced switching costs. Therefore, choosing an effective customer segmentation methodology which can consider the dynamic behaviors of customers is essential for every business. This paper proposes a new methodology to capture customer dynamic behavior using time series clustering on time-ordered data. This is an improvement over previous studies, in which static segmentation approaches have often been adopted. To the best of the authors’ knowledge, this is the first study that combines the recency, frequency, and monetary model and time series clustering to reveal trends in customer behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.