Abstract

This paper presents a novel technique for the analysis of looped linear time-invariant electric circuits. This approach works in both time and Laplace domains; any type of elements could hence be incorporated. The circuit elements are partitioned into twofold classes of basic circuit and subsidiaries. The basic circuit is a spanning tree of the network, and the subsidiaries include circuit elements hypothetically removed from the looped electric circuit to open the loops. The subsidiaries include a suit of passive elements which might not even make any interconnected circuit. The circuit governing equations of flow and energy conservation are manipulated so that branch currents in the subsidiaries and branch voltages in the basic circuit are considered as independent variables to calculate passive element properties (impedance of all passive elements) directly. In contrast to existing methods, this technique is tailored for the circuit analysis in a reverse manner. As a complement for conventional circuit analysis techniques, this method can be taught in the undergraduate program to offer the students an alternative tool for the circuit analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call