Abstract
Smart substation is a crucial Cyber-Physical system and is prone to cyber-attack. In this paper, we propose a novel anomaly detection mechanism tailored for detecting the IEC 61850-based network traffic. Three types of traffic features are taken into account for comprehensively characterizing the network traffic during a time window. To eliminate the subjectivity of manually selecting the traffic features, we exploit Discrete Wavelet Transform (DWT) algorithm to secondarily extract the deep features. An improved Locally Linear Embedding (LLE) algorithm is proposed to reduce the dimension of deep feature vectors with more effective dimensionality reduction ability. By doing so, the LSTM (Long Short Term Memory)-based Autoencoder network that can learn to reconstruct the normal traffic time-series behavior, and thereafter uses the reconstruction error to detect the anomalies. We assess the performance of our proposed mechanism with the comprehensive experiments on the real smart substation. The results indicate that the proposed mechanism can be performed in a fast way with satisfactory detection performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.