Abstract
We present a new method to simultaneously estimate cylindrical object radius ( R) and electromagnetic (EM) wave propagation velocity ( v) from ground penetrating radar (GPR) data. R estimation methods have been investigated since the middle of the previous decade, but studies have become more intensive and important over the last several years since they increase the utility of GPR data and enable new GPR applications. Since existing methods, according to the author's best knowledge, are based on a priori known v, the proposed method has an advantage: it eliminates the measurement of v and its influence on R estimation quality. Estimating v accurately results in better soil characterisation. Three steps are used to simultaneously estimate v and R. First, using the extracted raw data, the coordinates of the hyperbola apex ( x 0, t 0) are estimated. Second, the boundary speed ( v 0) is estimated, based on the previous results. In the final step, v is reduced from v 0 to a predefined v min. From the analysis of propagation velocity choice criterion, an optimal v is chosen, which is used to calculate a unique R. This proposed method is a nonlinear least squares fitting procedure. The method is implemented and verified, using data collected under real conditions, in a Matlab environment. A comparison of the proposed and existing methods shows that the new method is significantly more accurate and robust with regard to noise and the amount of raw data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.