Abstract

Abstract Multiple-step loading (ML) on a single specimen can be used to determine the peak compressive strengths at different confining pressures (σ′hS) of cement-mixed gravel (CMG) very similar to those obtained by single-step loading (SL) drained triaxial compression (TC) tests. However, only the unload/reload stress–strain relations at different σ′hS (except for the primary loading one at the first step) can be obtained from a ML test and the reloading relations become softer with an increase in the negative irreversible axial strain increment that has taken place during respective immediately preceding unloading regimes. This effect gradually decreased during reloading while it totally disappeared once large-scale yielding started. An empirical equation was developed to derive undamaged reloading stress–strain curves (URCs) by removing the damage effects from ML TC test measured reloading curves (MRCs). A new simple method was developed in the framework of proportional rule to simulate primary loading curves (PLCs) at different σ′hS from the MRCs from a given ML TC test using a correlation factor. A practical procedure for simulation of PLCs in a ML test were established and applied to generate PLCs in a ML test increasing σ′h and a ML test decreasing σ′h. The method was validated by comparing the PLCs simulated from the results of a pair of ML tests increasing and decreasing σ′h with those measured in a set of SL TC tests at different σ′hS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.