Abstract

Three-dimensional spatial distribution function (SDF) of solvent is a fundamental quantity for analysis of solvation. However, its calculation has been very limited because long computational time is required. We here developed a novel and robust method to construct approximated SDFs of solvent sites from radial distribution functions. In this method, the expansion of SDFs in real solid harmonics around atoms of solute leads to a linear equation, from which SDFs are evaluated with reasonable computational time. This method is applied to the analysis of the solvation structure of liquid water, as an example. The successful results clearly show that this method is very powerful to investigate solvation structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call